

# Simulation in Revenue Management

Christine Currie christine.currie@soton.ac.uk

### Introduction

- Associate Professor of Operational Research at the University of Southampton
- ~ 10 years experience in RM and simulation
- Projects with British Airways, Ocado, P&O Ferries, Thomas Cook, East Coast and others
- Director of the MSc in Operational Research





### Agenda

- What is simulation?
- Why is it useful?
- How can it be used in RM?
- Conclusion





# Simulation an introduction

### Instead ...



## Process Simulation e.g. call centre

- Market Simulation
  - e.g. effect of competition
- Agent-Based Modelling
  - e.g. impact of individual behaviour on revenue



# **Existing Simulation in RM**

 Testing RM Algorithms

### E.g. PODS

- Simulation model developed by Boeing and MIT
- Simulates a competitive market
- Complex simulation model

# Simulation Optimization

 Stochastic approximation algorithm (Robbins and Munro, 1951)

Southampton

 Used to improve heuristics for solving particular optimization problems

## **Simulation Education**

 Hotel RM simulation: wide range of organisations offering business simulation

 Useful tool for training people to consider new ideas

### Other examples

- <u>http://web.mit.edu/urban\_or\_book/www/a</u> <u>nimated-eg/ym/</u>
- Mainly academic





# Why simulate?

## **Benefits of Simulation**

- Obtain a better understanding of the system
   e.g. understand interactions between inputs
- Test a new system or process
  - Low-cost method of evaluating a new system or optimisation algorithm: *proof of concept*
- Determine the most efficient way of working
  - Compare different processes on a full range of scenarios
- Allows development of a robust solution



# How to simulate

### **Typical Simulation Project**

1. <u>Collect data and talk</u> to system experts to get a good understanding of the system

2. <u>Build the simulation model</u>: using a package (simple but inflexible) or coding

3. <u>Test the simulation model</u>: is it a good representation of the system?

4. <u>Run some trials</u>: run the simulation for relevant scenarios to get some results



### 1. Collect Data and Talk

Requirements: what's the question?

- How complex does the model need to be?
- What data are required?
- What data are missing?

However much data you have, you will always want more

Provides an excuse for talking to other interested parties

Asking "stupid" questions





### 2. Design of an RM Simulation



Adapted from Fig 1 Frank et al., Journal of Revenue and Pricing Management, Vol.7, pp 7-16



## 3. Testing!!



Sense check: does it react the way that an expert expects it to react?
Numerical calibration: do the numbers match those seen in the real system?

 Testing is vital to ensure the model is mimicking the real system



### 4. Run Scenarios

Golden Rule of Simulation Always use more than one run

- The output is stochastic/random so one run is never enough: find an average
- Account for the validity of the input data
   Don't go too far outside the observed range

Take time to set up the right scenarios



# Simulation for Experimentation

## Southamptor Using Simulation to Set Policies

- Moving beyond testing
- Simulation has a place for
  - Optimizing what is a highly variable system
  - Understanding missing data
  - Allowing all complexities to be included
  - Investigating customer behaviour

## **Simulation Optimization**

- Using simulation to set booking limits
- Changing the engine inside RM systems

### **OPERATIONS** RESEARCH

| JOURNAL HOME ABOU                                                                                | T ISSUES                   | ARTICLES IN ADVANCE                                                            | FOR AUTHORS | CONTACT |               |
|--------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------|-------------|---------|---------------|
|                                                                                                  |                            | Research > All Issues > N<br>rline Revenue Manageme                            |             | >       |               |
| Article Tools                                                                                    | Prev                       | ,                                                                              |             |         | Ne            |
| <ul> <li>Add to Favorites</li> <li>Email to a Colleague</li> </ul>                               |                            | Simulation-Based Booking Limits for Airline Revenue<br>Management              |             |         |               |
| <ul> <li>Download Citation</li> <li>Track Citations</li> <li>Permissions</li> </ul>              | Operation<br>Avenue, E     | Bertsimas<br>ns Research Center, Mass<br>E40-130, Cambridge, Mas<br>@mit.edu,  |             |         | Massachusetts |
| Article Metrics<br>(full-text views and PDI<br>downloads since this v<br>site went live on Octob | F Avenue, E<br>veb sanne@a | e Boer<br>ns Research Center, Mass<br>E40-130, Cambridge, Mas<br>alum.mit.edu, |             |         | Massachusetts |

OR Spectrum 29:21-38 (2007) DOI 10.1007/s00291-005-0018-z

#### **REGULAR ARTICLE**

Abhijit Gosavi · Emrah Ozkaya · Aykut F. Kahraman

#### Simulation optimization for revenue management of airlines with cancellations and overbooking

Published online: 9 December 2005 © Springer-Verlag 2005

Next

**Abstract** This paper develops a model-free simulation-based optimization model to solve a seat-allocation problem arising in airlines. The model is designed to



### Example

### 3 competitors



Increasing price

If all 3 companies charge the same price, customers would purchase from Established

### **Competition in RM**

- Two types of competition
  - 1. Competition between different companies
  - 2. Competition between different services offered by the same company
- Currie et al. (2008) considers a duopoly where customers base decisions purely on price (type 1 competition)
- Other work utilises the multinomial logit model (MNL) to describe the probability of purchase of different services based on their characteristics (type 2 competition), e.g. Vulcano and van Ryzin, 2010

### Assumptions

- We aim to maximise revenue from an airline
  - Single-leg, single-class, no cancellations

We focus on optimization of prices

- Change prices at 2 reading days
- Allow anyone to book between reading days (up to capacity)

### **Arrival Rate**

- Observation: few bookings early on with an increase to a peak close to departure
- Non-homogeneous Poisson Process
- Rate parameter  $-f(t) = (f + dt) \exp(-ht)$

 Common assumption in RM (e.g. Zhao and Zheng, 2000; Talluri and van Ryzin, 2005)



### **Customer Arrival**



Departure



A potential customer chooses whether to purchase from company *i* with probability dependent on

- Airline
- Time until departure
- Price of ticket

### **The Simulation Model**



### **Research Question**

- What price strategy should the middle player use?
  - Less preferred than player 2 (Established)
  - Can afford to charge higher prices than player 3 (No Frills)



### **Expected Revenue**



### **Expected Bookings**



### **Agent Based Modelling**

- Bottom-up approach to modelling
  - Consider individual behaviour
  - Individuals communicate with each other and learn
- Macroscopic results
- Sustainable RM
   Lovric et al. 2013 (EJOR)



# Southampton Conclusion and Future Work

- There is a great deal of potential for simulation to help understand RM markets
- Next steps involve
  - Working with more sophisticated probability functions
  - Increasing the number of competitors
  - Investigating ABM particularly with regard to behaviour between competitors
- This is a growing area!

### Thank you for listening ....

# Southampton

Benefit from a new perspective. Masters in-depth investigations

> <u>www.southampton.ac.uk/cormsis</u> E-mail: cormsis@southampton.ac.uk